*BSD News Article 19514


Return to BSD News archive

Newsgroups: comp.os.386bsd.development
Path: sserve!newshost.anu.edu.au!munnari.oz.au!constellation!osuunx.ucc.okstate.edu!moe.ksu.ksu.edu!vixen.cso.uiuc.edu!howland.reston.ans.net!usc!elroy.jpl.nasa.gov!decwrl!csus.edu!netcom.com!jmonroy
From: jmonroy@netcom.com (Jesus Monroy Jr)
Subject: Food for thought
Message-ID: <jmonroyCBssIJ.3rp@netcom.com>
Keywords: logic permutations combinations factorials 
Organization: NETCOM On-line Communication Services (408 241-9760 guest)
Date: Sun, 15 Aug 1993 11:13:31 GMT
Lines: 74

 
 
        Some Formal Logic... try it!
        ----------------------------
 
        Legend
        ------
        A       first proposition
        B       second proposition
        ->      implication
        ~       Not
        T       True
        F       False
 
 
        A   |   B   | conclusion |     | Inverse  |
            |       |  A -> B    |     | ~A -> ~B |
        ----+-------+       +----+     |    +-----+
            |       |       | converse |    | Contrapositive
        A   |   B   |       | B -> A   |    |  ~B -> ~A
        ----+-------+-------+-------+--+----+-------------
            |       |       |       |       |
        T   |   T   |   T   |   T   |   T   |   T
            |       |       |       |       |
        T   |   F   |   F   |   T   |   T   |   F
            |       |       |       |       |
        F   |   T   |   T   |   F   |   F   |   T
            |       |       |       |       |
        F   |   F   |   T   |   T   |   T   |   T
 
-------
 
        Permutations
        ------------
 
                If "M" denotes the number of permutations of "n" things
        taken "p" and at time, --
 
                M = n(n-1)(n-2).....(n-p+1).
 
 
-------
 
 
        Factorials
        ----------
                      -n     n
                n! = e   *  n  *  square_root(2 * pi * n), approximately.
 
 
-------
 
        Combinations
        ------------
 
                If "M" denotes the number of permutations of "n" things
        taken "p" and at time, --
 
                M = n(n-1)(n-2).....(n-p+1) / p!
 
                or
 
                M = n! / p! (n-p)!
 
-------
 
        If you've found an error please write to me.
        jmonroy@netcom.com
 
___________________________________________________________________________
Jesus Monroy Jr                                          jmonroy@netcom.com
/386BSD/device-drivers /fd /qic /clock /documentation
___________________________________________________________________________